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Abstract

Automated fault detection is an increasingly important problem

in aircraft maintenance and operation. Standard methods of fault

detection assume the availability of either d;_ta produced during all

possible faJlty operation modes or a clearly-defined means to de-
termine wI ether the data is a reasonable match to known examples

of proper operation. In our domain of fault detection in aircraft,

the first assumption is unreasonable and the second is difficult to

determine. We envision a system for online fault detection in air-

craft, one part of which is a classifier that predicts the maneuver

being perf( rmed by the aircraft as a functio_ of vibration data and
other available data. We explain where this subsystem fits into our

envisioned fault detection system as well as experiments showing

the promis,- _ of this classification subsystem

1 Introduction

A critical aspect o; r_he operation and maintenano_ of aircraft is detecting prob-

lems in their oper_,tion when they occur in flight. This allows maintenance and

flight crews to fix problems before they become severe and lead to significant air-
craft damage or even a crash. Fault detection syslems designed for this purpose

are becoming a standard requirement in most aircraft. However, most systems are
inundated with false alarms, mainly due to an inability to match modeled behavior

with real signature_, making their reliability questionable in practice [CITE fault

detection lit]. Because of the highly critical nature of the aircraft domain applica-

tion, most fault det ?ction systems are faced with the task of functioning for systems
for which fault data are non-existent. Models are typically used to predict the ef-

fect of damage and failures on otherwise healthy (baseline) data [3, 5]. However,
while models are a aecessary first start, the modeled system response often doesn't

take the operational variability and noise into account, hence resulting in the high



ratesoffalsealaH_.s.Noveltydetectionisoneapproachto overcomethisproblem,
addressingtheproblemofmodelingtheproperoperationofasystemanddetecting
whenits operatim,deviatessignificantlyfromnormaloperation[2,4].

In thispaper,wepresentanapproachto noveltydetectionbasedon in-flightair-
craftdata.Thed;_awerecollectedaspartof a researcheffortto understandthe
sourcesof variabilty presentin theactualflighter_vironment,with thepurposeof
eliminatingthehighratesoffalsealarms[3,5,6].Thefundamentalideais theuse
of multiplesource_of informationto predictaspectsof systemstate,suchasthe
maneuverbeingp_,rformed,andpredictingfaultswhenthesystemstatepredictions
areincompatible.[n this paper,wepresentseveralmaneuverclassifiers.These
classifierstakevibrationdatafromvariousaccelerometersand/orotheravailable
dataas inputandpredictthe maneuverbeingperformed.Multiplesubsystems
that predictthemaneuvermaybepresentin thesystem.Modelsof aircraftop-
erationthat generatepredictionsof vibrationsignaturesmayalsobeincludedin
thissystem.An(verallfaultpredictorwouldcomparethe maneuverpredictions
fromthevarioussubsystemsandusesotherappropriatedatato diagnosewhethera
faultispresentbasedonthesepredictions.Forexample,if thevibrationdata-based
classifierpredictsthat thehelicopterisflyingforwardathighspeed,butotherdata
and/orsubsystem_indicatethattheaircraftisontheground,thentheprobability
that afault ispresentishigh.
In thefollowing,S_ction2discussestheaircraftuuderstudyandthedatagenerated
fromthem.Wediscussthemachinelearningmethodsthat weusedandthedata
preparationthat weperformedin orderto usethesemethodsin Section3. We
discussourexperi:nentalresultsin Section4. Wesummarizethe resultsof this
paperanddiscuss:mgoing and future work in Section 5.

2 Aircraft Data

Data used in this work were collected from two helicopters: an AH1 Cobra and

OH58c Kiowa [3]. The data were collected by having two pilots each fly two

designated sequem es of steady-state maneuvers according to a predetermined test

matrix [3]. The test matrix used a modified Latin-square design to counterbalance
changes in wind conditions, ambient temperature, and fuel depletion. Each of the

four flights consisted of an initial period on the ground (Maneuver G) with the

helicopter blades a: flat pitch, a low hover (Maneuver H), a sequence of maneuvers

drawn from the 12 primary maneuvers, a low hover, and finally a return to ground.
Each maneuver was scheduled to last 34 seconds in order to allow a sufficient num-

ber of cycles of the main rotor and planetary gear assembly to apply the signal

decomposition tect niques used in the previous studies.

Summary matrices were created from the raw data by averaging the data produced

during each revolution of the planetary gear. The summarized data consists of 31168
revolutions of data for the AH-1 and 34144 revolutions of data for the OH58c. Each

row, representing one revolution, indicates the maneuver being performed during
that revolution as well as columns representing the following 30 quantities: Rev-

olutions per minute of the planetary gear, Torque (four columns: average, stan-
dard deviation, sk¢,w, and kurtosis), Vibration data from six accelerometers (four

columns per accelerometer: root-mean-square, skew. kurtosis, and a binary variable

indicating whether signal clipping occurred), Pilot (binary variable). For the AH-
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Figure 1:OH58 lk.:aneuver 1 (Forward Figure 2:OH58 Maneuver 4 (Sideward

Flight Low Speed) Flight Right)

1, the following acLditional data (14 columns) were' available for collection from a
1553 bus: Altitude (average and standard deviatior0, Speed (average and standard

deviation), Rate o_' (:limb (average and standard d_,viation), Heading (average and
standard deviation), Bank Angle (average and standard deviation), Pitch (average

and standard devi_tion), Slip (average and standard deviation).

3 Approach

Sample data from two selected maneuvers are shown in Figure 2. The highly-
variable nature of t he data, as well as differences du_ to different pilots and different

days when the airzraft were flown, are clearly visible, making this a challenging
classification problem. To perform the necessary mapping for this problem, we

chose multilayer perceptrons (MLPs) with one hidden layer and radial basis function

(RBF) networks a:s our base classifiers. The first was selected due to its relative
ease to use whereas the second for its potential ability to focus on specific "areas"

of the feature spac_ [CITE kagan and nikunj's paper]. Furthermore, we constructed

ensembles of each type of classifier, as well as ens_mbles consisting of half MLPs

and half RBF networks, because ensembles have b_en shown to improve upon the

performance of ther constituent or base classifiers, particularly when the correlation

among those base ,:lassifiers can be kept low [1, 9].

We used data sets :onsisting of all the available fea,.ures as inputs (44 for the AH1,

30 for the OH58) aad one output for each maneuver (14 possible maneuvers in both

cases) gathered from the 176 summary matrices. L £his resulted in 31168 patterns

(revolutions) for the AH1 and 34144 for the OH58. Both types of classifiers were
trained using a randomly-selected two-thirds of th_ data (21000 examples for the

AH1, 23000 for the OH58) and were tested on the remainder for the first set of

experiments.

For both data set:; and for both types of classifiers, we determined the number

of hidden units/ke:nels experimentally. For MLPs, we explored hidden layer sizes

ranging from 5 to 100 in increments of 5, and set_.led on 25 hidden units for the
AH1 and 65 units [or the OH58. We used a learning rate and momentum term of

_We linearly transfi)rmed all the input features to b,_ in the [-2, 2] range.



Table1:Sampleconfusionmatrixfi)r 0H58(MLP).

Classification

cl_ I[ _ _ I -:_ I 4 I _ I o 7 I _ I 9 I lo I _1 I 1', I 1_ I 14 J
t 693 0 7 6 79 0 0 0 0 0 0 0 0 0

2 0 otu o u 0 0 0 0 u 0 u u 4, 0 r

3 55 1 568 64 31 6 0 I1 9 1 11 7 0 3 I

4 26 0 13 691 15 0 0 3 0 0 0 2 0 i 1

5 196 0 68 41 412 0 0 0 0 0 2 16 0 0

6 0 0 0 0 0 719 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1079 0 0 0 0 0 0 0

8 0 9 22 16 0 0 0 748 177 97 ii 6 3 0

9 0 I I 6 0 0 0 172 381 162 4 7 6 0

i0 0 4 I 6 0 0 0 188 170 376 0 S 13 0

11 4 0 15 4 3 0 0 2 i 0 494 217 0 0

12 3 0 7 6 4 0 0 2 1 0 200 531 0 0

13 0 63 0 0 0 0 0 4 I 0 0 0 712 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 685

0.2, and we trained for 100 epochs. The performance of both types of classifiers

was fairly insensitive to both the hidden unit size/number of kernels and learning

parameters. We created 280 MLPs for each helicopter, and we report results as

averages over these 280 runs. These 280 MLPs were given different random initial

weights before training, but were trained using the same training sets.

For the RBF netw(,dCs, we used 100 centers for the ()H58 data and determined each

kernel's center anc width using the nearest 300 patterns. 2 For the AH1 data, we

used 55 kernels with the centers and widths determined by the nearest 500 patterns.

For each helicopte:, we created 100 RBF networks, each of which had a different
set of centers, and report results as averages over these 100 runs. 3

For both data set." and classifiers, we used simple averaging ensembles. Though

simple to apply, su(:h ensembles perform remarkably well on a variety of data sets [1,

7, 8]. We experimented with ensembles consisting of 2 to 100 base classifiers for our

MLP and MLP/RBF ensembles, and 2 to 50 base classifiers for our RBF ensembles,

although performaace improvements after 10 base classifiers were marginal. These
ensembles consisted of random samples drawn from the 280 MLPs and 100 RBF

networks that we created for our single-network oxperiments. For each size of

ensemble, we drew 20 random samples and report the results as averages over these

runs.

In addition, we cah ulated the confusion matrix of every classifier we created. Entry

(i,j) of the confusion matrix of a classifier states the number of times that an

example of class i is classified as class j. In examining the confusion matrices of
our classifiers (see Table 1 for an example of a confusion matrix--entry (1, 1) is

in the upper left corner), we noticed that particular maneuvers were continually

being confused wi_h one another. In particular, T.he three hover maneuvers (8-
Hover, 9-Hover Tm n Left, and 10-Hover Turn Right) were frequently confused with
one another and the two coordinated turns (11-Coordinated Turn Left) and (12-

Coordinated Turn R.ight) were also frequently confllsed (the counts associated with
these errors are sho_n in bold in Table 1. These sets ,)f maneuvers are similar enough

to one another tha_ misclassifications within these groups are unlikely to imply the

2That is, for each (:enter, the 300 training cases closest to it in Euclidian distance were
used to determine it:; radius. Therefore, the radius increases with the number of points.

3Due to the larg(, computation time needed to obtain the centers and widths of the
kernels on such large data sets, we only used 100 RBFs as opposed to 280 MLPs.



Base

Type

MLP

RBF

MLP/
RBF

Table 2 OH58c and AH1 Single Revolution Test Set Results.

OH58 Results AH1 Results

N Single
Rev

1 80.533 -t- 0.110
4 8:3.114 ± 0.063

10 83.578 ± 0.047
100 83.960 ± 0.018

1 7".650 4- 0.142
4 78.408 4- 0.089

lO 78.550 + 0.039
50 78.729 ± 0.018

2 8 .851 4- 0.087
4 82.724 4- 0.084

10 83.308 4- 0.041
100 83.798 4- 0.023

Single IKev
Confusion

Single
Rev

Single tiev
Confusion

93.098 4- 0.073
94.307 4- 0.038
94.470 ± 0.025
94.683 4- 0.010

90.860 4- 0.104
91.384 4- 0.052
91.607 4- 0.027
91.638 4- 0.011

93.548 4- 0.053
94.097 5= 0.047
94.346 4- 0.031
94.548 4- 0.014

96.161 5= 0.138

97.747 4- 0.071
98.089 4- 0.042
98.225 4- 0.008
95.811 4- 0.098
96.272 4- 0.032
96.441 4- 0.021
96.438 4- 0.009

97.392 4- 0.069
97.715 4- 0.063
97.899 + 0.019
97.989 4- 0.007

98.643 4- 0.094

99.583 4- 0.064
99.737 4- 0.041
99.818 4- 0.003
99.106 4- 0.060
99.390 4- 0.035

99.472 4- 0.013
99.493 ± 0.005
99.515 4- 0.053
99.646 ± 0.056

99.764 4- 0.011
99.791 4- 0.003

presence of faults. Therefore, for our second set of experiments, we recalculated the

classification accm acies after consolidating these maneuvers (e.g., all three hovers

into one maneuver and both left and right turns into one maneuver).

Finally, we used the knowledge that a helicopter needs some time to change ma-

neuvers. That is, t ao sequentially close patterns are unlikely to come from different

maneuvers. To ot,tain results that use this "prior" knowledge, we tested on se-

quences of revolutions by averaging the classifiers' otltputs on a window of examples

surrounding the current one. In one set of experiments, we averaged over windows

of size 17 (8 revoh tions before the current one, the current one, and 8 revolutions

after the current (he) which corresponds to about three seconds. Note that, be-

cause the initial tiaining and test sets were randomly chosen from this sequence,

this averaging cou (1 not be performed on the test set alone. Instead it was per-

formed on the full data set for both helicopters. To allow meaningful comparisons

of these results, w_ also computed the "full set error" (training and test errors) on

the original, segmented data and these results are presented in Tables 3,4. 4

4 Results

In this section we describe the experimental results ,:hat we have obtained so far. In

Table 2, the column marked "Single Rev" shows the results of running individual

networks and ensembles of various sizes on the summary matrices randomly split

into training and test sets. We only present results for some of the ensembles we

constructed due to space limitations and because the ensembles exhibited relatively

small gains beyomt 10 base models. N is the number of base models used for

the classification. MLPs and ensembles of MLPs outperform RBFs and ensembles

of RBFs consisten;ly. The ensembles of MLPs improve upon single MLPs to a

greater extent than ensembles of RBF networks do upon single networks, indicating

that the MLPs are more diverse than the RBF networks. Mixed ensembles have

4We performed this windowed averaging as though the entire data were collected over

a single flight. However, it was in fact collected in stages, meaning that there axe no
transitions between maneuvers. We show these results to demonstrate the applicability

of this method to sequential data obtained in actual flight after training the network on

"static" single revoh tion patterns.



Table3: OH58,:SingleRevolutionandWindowingResultsonFullDataSet.
Base
Type

MLP

RBF

MLP/
RBF

N
1
4
10
100
1
4
10
50
2
4
10
100

Single
Rev

82724± 0.121
85466
86035
86414
79484
79127
79297
79 460
83 740

84 710
85 280

85 681

Single Rev
Consolidated

94.067
± 0.073 95.020
± 0.050 95.243

± 0.015 95.420
± 0.053 91.313
± 0.094 91.786
± 0.047 91.975
± 0.014 92.014
± 0.093 94.212

± 0.075 94.748
± 0.038 95.012
t 0.017 95.147

± 0.049
± 0.034
± 0.034
± 0.007

± 0.099
± 0.045
± 0.020
± 0.008

± 0.063
± 0.048
± 0.030
4. 0.012

Window
of 17

1[ 89.813 4. 0.191
9t.287 4. 0.130
9t.550 4. 0.081
9t.621 4. 0.022

8,1.670 4. 0.212
8,1.739 4. 0.131
84.977 4. 0.070
85.086 ± 0.021
8!).935 4. 0.163

91},493 4. 0.125
90.755 4. 0.068
9I).838 4. 0.029

V¢inflow ot
17 Consolidated

96.799 4. 0.142
96.956 4. 0.043
97.006 4. 0.044
97.067 4. 0.008

95.008 4. 0.115
95.026 4. 0.058
95.232 4. 0.045
95.103 ± 0.017
96.508 4. 0.084

96.779 4. 0.069
96.869 4. 0.043
96.822 4. 0.014

performances sup(rior to the pure-MLP for small numbers of base models, but

have worse performances for larger numbers of models. Mixed ensembles perform

better than pure-RBF ensembles for all numbers of base models. In the smaller

ensembles, the diversity provided by including RBF networks helped relative to

pure-MLP ensembles. However, in the larger ensembles, replacing half the MLPs

with RBFs degrades performance--the RBFs are different from the MLPs but not

different enough from each other to warrant having such a large number of them.

Note that the eolunm marked "Single Rev Confusion" shows the single revolution

results after allow ng for confusions among the hover maneuvers and among the

coordinated turns. As expected, the performances improved dramatically.

Table 3 shows the results of performing the windowed averaging described in the

previous section in the column marked "Window of 17." The column "Window of

17 Confusion" giws the results allowing for the confusions mentioned earlier. The

columns marked "Single Rev" and "Single Rev Confusion" are the average of the

training and test errors, weighted by their sizes. We can clearly see the benefits of

this windowed ave=aging, which serves to smooth out some of the noise present in

the data.

Table 4:AH1 Single Revolution and Windowing Results on Full Data Set.

Base N Single
Type Rev

1 96.567 + 0.115
MLP 4 98.007 4- 0.064

10 98.313 4. 0.041
100 98.438 4. 0.006

1 96.023 4. 0.093
RBF 4 96.480 ± 0.031

10 96.638 4. 0.015
50 96.649 4. 0.008
2 97.664 4. 0.059

MLP/ 4 97.957 4. 0.052
RBF 10 98.092 ± 0.017

100 98.1,14 4. 0.014

Single Rev
Confusion

98.789 4. 0.081
99.561 4. 0.060
99.769 4. 0.042
99.852 4. 0.003
99.2094.0.051
99.469 4. 0.029
99.535 4. 0.011
99.558 4. 0.005
99.611 4. 0.045
99.699 4. 0.046
99.796 4. 0.010
99.810 4. 0.008

Window
of 17

97.821 4. 0.111
98.933 4.0.080
99.179 4. 0.040
99.268 4. 0.004

97.120 4. 0.114
97,495 4. 0.044
97.636 4. 0.019
97.624 4. 0.005
9_.564 4. 0.062
98.725 4. 0.056

9_.818 4. 0.021
9_.852 4. 0.006

Window ot
17 Confusion

98.744 4. 0.086
99.374 4. 0.082
99.621 4. 0.039

99.700 4. 0.002
98.931 4.0.064
99.141 4. 0.023
99.194 4. 0.011
99.187±0.003
99.327 ± 0.053
99.390 4. 0.055

99.516 4. 0.012
99.546 4. 0.003

Table 4 shows the _nalogous results for the AH1 helicopter. The performances are

substantially better here than for the OH58. We expected this because the AH1



Table 5:AH1 Bus and Non-Eus Results

Inputs -Single Single Rev Window
Rev Confusion of 17

Bus 90.380 + 0.110 I 95.871 + 0.091 91 209 + 0.126
Non-Bus 87.$84 -4-0.228 93.731 -4-0.171 92 913 4- 0.355
P(agree) 79.523 4- 0.247 90.063 4- 0.202 85 609 4- 0.320

Window of I17 Confusion

96.027 5= 0.086 ]
96.110 4- 0.236

I

93.393 5= 0.247

is a heavier helicopter, so it is less affected by coaditions that tend to introduce

noise such as wind changes. Just as with the OH58, on the AH1, the mixed ensem-

bles outperform the pure ensembles for small numbers of base models but perform

worse than the MLP ensembles for larger numbeis of base models. Once again,

we can see that ensembles of MLPs outperform single MLPs to a greater extent

than ensembles of RBFs outperform single RBFs, so the RBFs are not as different
from one another. Because of this, it does not hell) to add large numbers of RBF

networks to an MLP ensemble. Note that the same sets of maneuvers that were

frequently confused on the OH58 were confused on the AH1. Taking this confusion
into account boosted performance significantly. The windowed averaging approach

did not always yield improvement when allowing for the maneuver confusions, but

helped when classifying across the full set of maneuvers. However, in all cases when
windowed averaging did not help, the classifier perfi)rmance was at least 98.93%, so

there was very little room for improvement.

5 Discussion

In this paper, we t.resented an approach to fault detection that contains a subsys-

tem to classify an operating aircraft into one of several states. More specifically,

the proposed syste_l determines the maneuver being performed by an aircraft as a
function of vibration data and any other available data. Through experiments with

two helicopters, we demonstrated that the system is able to determine the maneuver

being performed ,_ith good reliability (at least 95% when allowing for confusions

among very similar system states and smoothing by combining predictions from

short sequences of data). The initial results show great promise in classifying the
correct maneuver with high certainty. Future work will involve applying this ap-

proach to "free-flight data", where the maneuvers are not static or steady-state,
and transitions between maneuvers exist.

The results presen_ed in this paper address the maneuver classification portion of

the online fault detection system envisioned in this research. To address the overall

novelty detection problem, future work will involve experiments to determine the

probabilities of agreement between different classification results, to detect possible
faults when there is a mismatch. For example, for the AH1 helicopter, we have data

from a 1553 bus as described in Section 2. We trained some classifiers using just the

bus data as inputs and other classifiers using all except the bus data. Table 5 shows

just the results of :raining 20 single MLPs on these data using the same network

topology as for the other MLPs trained on all the Attl data. They performed much

worse than the single MLPs trained with all the inputs presented at once. The last
line in the table indicates the percentage of maneuvers for which the two types of

classifiers agreed.



RecallfromSection1 that wewouldlike classifi,_rdisagreementto indicatethe
presenceofafault;therefore,wewouldliketheseagreementprobabilitiesto bemuch
higher.However,_'ehypothesizethat wecanusethebusdatain a muchsimpler
way.Forexample,if thevibrationdata-basedclassifierpredictsthat theaircraft
isperformingahigh-speedforwardflight,but the})usdata indicates that airspeed
is near zero, then the probability of a fault is higt. We do not necessarily need a

system that retur:Ls the maneuver as a function of all the variables that constitute
the bus data. In this example, we merely need to know that a near-zero airspeed is

inconsistent with a high-speed forward flight. We plan to perform a detailed study
of the collected bus data so that we may construct simple classifiers representing

knowledge of the type just mentioned and use them to find inconsistencies such as

what we just described. We are confident that using the different types of system

models, metrics, and classifiers mentioned in this paper, we can obtain a reliable
fault detector.
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